
Ensuring Memory Safety for the Transition from C/C++ to Rust

Oliver Braunsdorf, Maurice Hieronymus, Konrad Hohentanner, Benjamin Orthen
November 2, 2023

Ensuring Memory Safety for the Transition from C/C++ to Rust | Oliver Braunsdorf | November 2, 2023 | 1

Advantages of Rust

■ Fun programming
■ Explicit error handling
■ Helpful compiler errors enable ”Compiler-Driven Development”
■ Modern syntax but low-level control over hardware
■ cargo as one tool for building, dependency management, testing
■ ...

■ Security by Design ⇒ reduced cost for bug fixing after deployment
■ Traits & Zero-Sized Types enable secure API design
■ Type system enables memory-safe and data-race-free programming

Ensuring Memory Safety for the Transition from C/C++ to Rust | Oliver Braunsdorf | November 2, 2023 | 2

Focus: Memory Safety

■ Spatial Memory Safety ”is a property that ensures that all memory dereferences are
within bounds of their pointer’s valid objects. An object’s bounds are defined when the
object is allocated.”

In Rust: strong type system enables...
■ ...compiler to check if all accesses to statically-sized objects are in-bounds
■ ...runtime to check if all accesses to dynamically-sized objects are in-bounds

■ Temporal Memory Safety ”is a property that ensures that all memory dereferences are
valid at the time of the dereference, i.e., the pointed-to object is the same as when the
pointer was created. When an object is freed, the underlying memory is no longer
associated to the object and the pointer is no longer valid.”

In Rust: Ownership + Borrowing ensures that only 1 Owner exists, and no access is
possible after automatic Drop

0https://nebelwelt.net/teaching/17-527-SoftSec/slides/02-memory_safety.pdf

Ensuring Memory Safety for the Transition from C/C++ to Rust | Oliver Braunsdorf | November 2, 2023 | 3

https://nebelwelt.net/teaching/17-527-SoftSec/slides/02-memory_safety.pdf

The Issue with Adopting Rust

■ Organizational problems when adopting a new programming
language: existing (complex) software cannot be easily
re-written in new language

■ Complex & maybe tedious endeavor
■ Employees have to be trained
■ New developers have to be hired
■ Development and Test-processes have to adapted

Ensuring Memory Safety for the Transition from C/C++ to Rust | Oliver Braunsdorf | November 2, 2023 | 4

Gradually Transitioning to Rust

■ Step-by-step migration of existing code
■ Assess code base: identify small self-contained modules for Rust replacement
■ Re-write
■ Test & Validate
■ Repeat

■ Leads to mixed-language binaries: integrate Rust and C/C++Code within same address
space

■ Powered by Rust’s Foreign Function Interface (FFI)

Ensuring Memory Safety for the Transition from C/C++ to Rust | Oliver Braunsdorf | November 2, 2023 | 5

Rust and C/C++ Interoperability through FFI

Unsafe Legacy
Code

(e.g. C/C++)

Compiler

Direct
Function Calls

via FFI

Safe
Rust Code

Unsafe
Rust
Code

C/C++
Library

Linker

Executable Program

Rust
Library

Compiler

Ensuring Memory Safety for the Transition from C/C++ to Rust | Oliver Braunsdorf | November 2, 2023 | 6

The Problem with FFI

Unsafe Legacy
Code

(e.g. C/C++)

Compiler

Direct
Function Calls

via FFI

Safe
Rust Code

Unsafe
Rust
Code

C/C++
Library

Linker

Executable Program

Rust
Library

Compiler

Ensuring Memory Safety for the Transition from C/C++ to Rust | Oliver Braunsdorf | November 2, 2023 | 7

Solution: Memory-Safety Sanitizer

Unsafe Legacy
Code

(e.g. C/C++)

Compiler

Direct
Function Calls

via FFI

Safe
Rust Code

Unsafe
Rust
Code

C/C++
Library

Linker

Executable Program

Rust
Library

CompilerSanitizer Sanitizer

C/C++
Library

Executable Program

Ensuring Memory Safety for the Transition from C/C++ to Rust | Oliver Braunsdorf | November 2, 2023 | 8

Solution: Memory-Safety Sanitizer

■ Goal: complete memory safety for whole
mixed-language binary

■ Compiler-based Memory Safety
■ + Easily activated by compiler flag
■ + No source code changes
■ + Detects out-of-bounds access
■ + Detects out-of-lifetime access
■ - Runtime and memory overhead

■ LLVM maintained implementations:
■ Address Sanitizer(ASAN)
■ Hardware-assissted Address Sanitizer (HWASAN)

Unsafe Legacy
Code

(e.g. C/C++)

Compiler

Direct
Function Calls

via FFI

Safe
Rust Code

Unsafe
Rust
Code

C/C++
Library

Linker

Executable Program

Rust
Library

CompilerSanitizer Sanitizer

C/C++
Library

Executable Program

Ensuring Memory Safety for the Transition from C/C++ to Rust | Oliver Braunsdorf | November 2, 2023 | 9

Solution: Memory-Safety Sanitizer

How Sanitizers Work

In General

■ On pointer allocation: store metadata about memory object

■ On pointer propagation (assignments, pointer arithmetic): propagate metadata
accordingly

■ On pointer dereference: check metadata to validate that...
■ pointer accesses memory-object in bounds of allocation, and
■ accessed memory object is not yet deallocated

■ On pointer deallocate: invalidate metadata

Ensuring Memory Safety for the Transition from C/C++ to Rust | Oliver Braunsdorf | November 2, 2023 | 10

Solution: Memory-Safety Sanitizer

How Sanitizers Work

HWASAN

■ Tagging-based sanitizer using ARM Top-Byte-Ignore feature

■ On pointer allocation: store 8-bit tag in upper pointer bits and shadow memory

■ On pointer propagation: nothing, implicit

■ On pointer dereference:
■ Load tag from shadow memory
■ Compare with tag in pointer
■ Allow access if tags match

Hohentanner et al. - HWASanIO: Detecting C/C++ Intra-object Overflows with Memory Shading

Ensuring Memory Safety for the Transition from C/C++ to Rust | Oliver Braunsdorf | November 2, 2023 | 11

Solution: Memory-Safety Sanitizer

Sanitizer in Rust

RUSTFLAGS="-Zsanitizer=hwaddress" cargo +nightly run -Zbuild-std --target

aarch64-unknown-linux-gnu

■ -Zsanitizer=[address|hwaddress|...]: select sanitizer

■ -Zbuild-std: re-build the std lib with sanitizer

■ Only available on nightly toolchain at the moment

More info:
https://doc.rust-lang.org/beta/unstable-book/compiler-flags/sanitizer.html

Ensuring Memory Safety for the Transition from C/C++ to Rust | Oliver Braunsdorf | November 2, 2023 | 12

https://doc.rust-lang.org/beta/unstable-book/compiler-flags/sanitizer.html

DEMO

Current Research: Sanitizer Optimizations for Safe Rust

Idea

■ Additional memory-safety checks for safe
Rust code unnecessary

■ Core Goal:
■ Only instrument C/C++ and unsafe

Rust Code
■ Omit instrumentation for all Rust

objects that can be proven to be safe
by the Rust compiler & runtime

Example: Only object b is affected by unsafe
code. Object a does not need
instrumentation.

1 extern fn foreign_function;

2 fn main() {

3 let mut a = [0,1,2];

4 let mut b = [3,4,5];

5 unsafe {

6 let x = b.as_mut_ptr();

7 foreign_function(x);

8 }

9 }

Ensuring Memory Safety for the Transition from C/C++ to Rust | Oliver Braunsdorf | November 2, 2023 | 14

Current Research: Sanitizer Optimizations for Safe Rust

Approach

■ Primary way of exchanging non-primitive data
structures ⇒ Raw Pointers: *mut T / *const T

■ Rust stops guaranteeing memory-safety when raw
pointer is accessed

■ ⇒ Use sanitizer to jump-in for raw pointers

■ During compilation: at conversion between Safe
Rust Pointers and Raw Pointers, keep track of
spatial and temporal memory-safety properties

■ Safe → Raw: emit know size, liveliness
guaranteed

■ Raw → Safe: emit expected size & liveliness
asserted

Safe Rust Pointers (statically or
dynamically sized)

Ensuring Memory Safety for the Transition from C/C++ to Rust | Oliver Braunsdorf | November 2, 2023 | 15

Current Research: Sanitizer Optimizations for Safe Rust

Architecture

LLVM

SafeFFI Pass

- collect SafeFFI
metadata
- propagate metadata
for every pointer in
function
- insert checks for
raw->safe casts
- provide API
isSafePtr(ptr) : bool

rustc

clang

HWASAN
-use isSafePtr API
- implement checks
for raw->safe casts

Softbound/CETS
-use isSafePtr API
- implement checks
for raw->safe casts

....

Instrumented
LLVM IR

Language
Frontends

Sanitizers

Rust
Code

C/C++
Code

Source Code
Files

SafeFFI
Adapter

Instrumented
LLVM IR SafeFFI Pass

HWASAN

Softbound/CETS

Ensuring Memory Safety for the Transition from C/C++ to Rust | Oliver Braunsdorf | November 2, 2023 | 16

Current Research: Sanitizer Optimizations for Safe Rust

Preliminary Results

Security

Figure: Spatial Vulnerabilities Figure: Temporal Vulnerabilities

Ensuring Memory Safety for the Transition from C/C++ to Rust | Oliver Braunsdorf | November 2, 2023 | 17

Current Research: Sanitizer Optimizations for Safe Rust

Preliminary Results

Performance

■ Measured with curl-rust (with statically linked openssl, libcurl, libz)

■ 56.20% saving of HWASAN’s check instructions
■ 324, 865 total memory accesses
■ 182, 585 elided checks
■ 352 additional check functions added

■ 70.59% saving of HWASAN’s check instructions when replacing OpenSSL C code by
Rust TLS implementation1

■ 274, 299 total memory accesses
■ 193, 637 elided checks
■ 219 additional check functions added

1https://github.com/rustls/rustls

Ensuring Memory Safety for the Transition from C/C++ to Rust | Oliver Braunsdorf | November 2, 2023 | 18

https://github.com/rustls/rustls

Current Research: Sanitizer Optimizations for Safe Rust

Preliminary Results

Performance

■ Measured with curl-rust (with statically linked openssl, libcurl, libz)

■ 56.20% saving of HWASAN’s check instructions
■ 324, 865 total memory accesses
■ 182, 585 elided checks
■ 352 additional check functions added

■ 70.59% saving of HWASAN’s check instructions when replacing OpenSSL C code by
Rust TLS implementation1

■ 274, 299 total memory accesses
■ 193, 637 elided checks
■ 219 additional check functions added

1https://github.com/rustls/rustls

Ensuring Memory Safety for the Transition from C/C++ to Rust | Oliver Braunsdorf | November 2, 2023 | 18

https://github.com/rustls/rustls

Current Research: Sanitizer Optimizations for Safe Rust

Preliminary Results

Incentive for Transition

The more legacy code you replace by Safe Rust code,
the more performance you regain,

while always maintaining memory safety.

Ensuring Memory Safety for the Transition from C/C++ to Rust | Oliver Braunsdorf | November 2, 2023 | 19

Current Research: Sanitizer Optimizations for Safe Rust

Preliminary Results

Performance

■ Direct performance gain dependent on application profile

■ Example: Rust Implementation of Leighton-Micali Signatures2

■ No I/O, high CPU utilization
■ many memory object manipulation operations
■ ⇒ worst case for memory-safety sanitizers

■ SafeFFI is 1.78x faster than unoptimized HWASAN

Vanilla HWASAN HWASAN+SafeFFI
2.858s 8.260s 4.648s

Table: Run time of LMS example

2https://github.com/Fraunhofer-AISEC/hbs-lms-rust

Ensuring Memory Safety for the Transition from C/C++ to Rust | Oliver Braunsdorf | November 2, 2023 | 20

https://github.com/Fraunhofer-AISEC/hbs-lms-rust

Current Research: Sanitizer Optimizations for Safe Rust

Preliminary Results

Limitations

■ std::mem::transmute()

■ Cast from raw pointer to safe pointer for arbitrary dynamic datastructures
■ Possible heuristic for &[T], &str, Vec<T>: from_raw_parts(buf,len)

Ensuring Memory Safety for the Transition from C/C++ to Rust | Oliver Braunsdorf | November 2, 2023 | 21

Current Research: Sanitizer Optimizations for Safe Rust

Outlook

Short-Term

■ Optimize SafeFFI LLVM Pass to recognize more safe pointers

■ More tests with real-world mixed-language programs e.g., Chromium, Firefox browsers
■ Security tests with known vulnerabilities of real-world programs
■ Performance tests (Rust benchmarks?)

Long-Term

■ Implement optimizations for more sanitizers or memory-safety hardware, e.g.,
■ CHERI
■ ARM MTE (Memory Tagging Extensions)

■ Extend concept for other LLVM-based programming languages: Swift, GO-LLVM

Ensuring Memory Safety for the Transition from C/C++ to Rust | Oliver Braunsdorf | November 2, 2023 | 22

THANK YOU!

■ Contact: Oliver Braundsorf
■ https://github.com/obraunsdorf
■ https://obraunsdorf.dev/
■ https://www.linkedin.com/in/obraunsdorf/

https://github.com/obraunsdorf
https://obraunsdorf.dev/
https://www.linkedin.com/in/obraunsdorf/

Backup

Backup

Example: Calling OpenSSL C functions from Rust

1 extern fn RSA_public_encrypt;

2 pub fn public_encrypt(

3 key: &RsaKey,

4 from: &[u8],

5 to: &mut [u8]

6) -> usize {

7 unsafe {

8 RSA_public_encrypt(

9 from.len() as c_int,

10 from.as_ptr(),

11 to.as_mut_ptr(),

12 key.as_ptr());

13 }

14 }

Ensuring Memory Safety for the Transition from C/C++ to Rust | Oliver Braunsdorf | November 2, 2023 | 25

Backup

HWASAN

■ Tagging based memory sanitizer using ARM Top-Byte-Ignore Feature

■ Per-object 8-bit tag stored in upper pointer bits and shadow memory

■ On memory access:
■ Load tag from shadow memory
■ Compare with tag in pointer
■ Allow access if tags match

2HWASanIO: Detecting C/C++ Intra-object Overflows with Memory Shading

Ensuring Memory Safety for the Transition from C/C++ to Rust | Oliver Braunsdorf | November 2, 2023 | 26

Backup

HWASAN

■ Pros:
■ Low memory overhead (ca. 35%) with the default 16-to-1 granularity
■ Run time overhead of ca. 2x

■ Cons:
■ Only 8 bits of entropy → Tag reuse between objects
■ Only 1 tag per object → no intra-object detection for structs/classes

2HWASanIO: Detecting C/C++ Intra-object Overflows with Memory Shading

Ensuring Memory Safety for the Transition from C/C++ to Rust | Oliver Braunsdorf | November 2, 2023 | 26

Backup

Utilize Existing Approach: Softbound & CETS

■ Compiler-based memory safety for C, published 2009
■ Softbound: spatial memory safety

1 ptr = malloc(size);

2 ptr base = ptr;

3 ptr bound = ptr + size;

4 if (ptr == NULL) ptr bound = NULL;

1 if ((ptr < base) || (ptr+size > bound)) {
2 abort();

3 } else {
4 value = *ptr;

5 }

Ensuring Memory Safety for the Transition from C/C++ to Rust | Oliver Braunsdorf | November 2, 2023 | 27

Backup

Utilize Existing Approach: Softbound & CETS

■ Compiler-based memory safety for C, published 2009

■ CETS: temporal memory safety

1 ptr = malloc(size);

2 ptr key = next key++;

3 ptr lock addr = allocate lock();

4 *(ptr lock addr) = ptr key;

1 if (ptr key != *ptr lock addr) { abort(); }
2 value = *ptr;

Ensuring Memory Safety for the Transition from C/C++ to Rust | Oliver Braunsdorf | November 2, 2023 | 28

Backup

Utilize Existing Approach: Softbound & CETS

■ Performance with Softbound/CETS port to LLVM9

■ Benchmark program: sha256sum (C coreutils)

■ Tested different sizes of input data to be hashed

■ Results:
■ Runtime without inlining of Softbound/CETS functions: 5x - 30x; geo. mean: 14.58x
■ Runtime with inlining using LTO: 5x - 25x; geo. mean: 12.62x
■ Memory without inlining of Softbound/CETS functions: geo. mean: 09.53x
■ Runtime with inlining using LTO: geo mean: 10.92x

■ Savings by SafeFFI optimizations�

■ dereference checks: -0 % overhead
■ stack metadata propagation: -? % overhead
■ heap metadata propagation: -? % overhead

�
real results might be worse, because unsafe pointers are underapproximated at the moment

Ensuring Memory Safety for the Transition from C/C++ to Rust | Oliver Braunsdorf | November 2, 2023 | 29

Backup

Utilize Existing Approach: Softbound & CETS
1K 2K 4K 8K 16
K

32
K

64
K

12
8K

25
6K

51
2K

10
24

K

20
48

K

Input size

0

200

400

600

800

1000

1200

Ru
nt

im
e

[s
]

version
asan
softbound
softbound-lto
vanilla

Figure: Runtime Overhead

1K 2K 4K 8K 16
K

32
K

64
K

12
8K

25
6K

51
2K

10
24

K

20
48

K

Input size

0

2500

5000

7500

10000

12500

15000

17500

M
ax

. r
es

id
en

t s
et

 si
ze

 [k
B]

version
asan
softbound
softbound-lto
vanilla

Figure: Memory Overhead

Ensuring Memory Safety for the Transition from C/C++ to Rust | Oliver Braunsdorf | November 2, 2023 | 30

Backup

Utilize Existing Approach: Softbound & CETS

Example: Calling OpenSSL C functions from Rust

1 extern fn RSA_public_encrypt;

2 pub fn public_encrypt(

3 key: &RsaKey,

4 from: &[u8],

5 to: &mut [u8]

6) -> usize {

7 unsafe {

8 RSA_public_encrypt(

9 from.len() as c_int,

10 from.as_ptr(),

11 to.as_mut_ptr(),

12 key.as_ptr());

13 }

14 }

Ensuring Memory Safety for the Transition from C/C++ to Rust | Oliver Braunsdorf | November 2, 2023 | 31

Backup

Status 29.07.2021

■ Softbound/CETS ported from LLVM 3.4 to LLVM 9 (incl. Compiler-RT)

■ Softbound/CETS as Sanitizer in Clang
■ ✓ Compiling and running simple tests, detecting memory safety violations
■ ✓ Compiling Nginx, git, tmux, ...
■ ✗ Running these applications aborts with false positive due to missing support for variadic

arguments in Softbound/CETS

■ Softbound/CETS as Sanitizer in Rust compiler
■ ✓ Compiling and running simple tests, detecting memory safety violations
■ ✓ Compiling libraries aho-corasick, rand
■ ✗ Running library tests aborts with false positive due to ?
■ Instrumentation of all Rust code, no optimizations implemented

Ensuring Memory Safety for the Transition from C/C++ to Rust | Oliver Braunsdorf | November 2, 2023 | 32

Backup

Status 27.01.2022

■ Softbound/CETS ported from LLVM 3.4 to LLVM 9 (incl. Compiler-RT)
■ Softbound/CETS as Sanitizer in Clang

■ ✓ Compiling and running simple tests, detecting memory safety violations
■ ✓ Compiling Nginx, git, tmux, ...
■ ✗ Running these applications aborts with false positive due to missing support for variadic

arguments in Softbound/CETS

■ Softbound/CETS as Sanitizer in Rust compiler
■ ✓ Compiling and running simple tests, detecting memory safety violations
■ ✓ Compiling libraries aho-corasick, rand
■ ✓ Compiling and running real world no-std crates (LMS)
■ ✓ Compiling the Rust standard library
■ ✓ Compiling and running real world pure rust crates with std-lib (ripgrep, coreutils)
■ ✓ Optimizations (discussed in the following)

■ elide dereference checks for safe pointers
■ elide metadata propagation for safe pointers

Ensuring Memory Safety for the Transition from C/C++ to Rust | Oliver Braunsdorf | November 2, 2023 | 33

Backup

Problem: Nested Pointers in Aggregate Types

■ Aggregate Types ≈ Arrays, Structs

■ Used heavily in Rust for two-valued types, e.g.
■ Option<T> / Result<T> ≈ (discriminant ∈ {0, 1}, value ∈ T)
■ Fat pointers aka. unsized or dynamically sized types

■ Solution: Recursively traverse the struct
■ for stack objects: push metadata for each contained pointer type onto shadow stack.

Status: ✓
■ for heap objects: store metadata for each contained pointer type based in runtime

metadata Trie?
Status: ✗

Ensuring Memory Safety for the Transition from C/C++ to Rust | Oliver Braunsdorf | November 2, 2023 | 34

Backup

Problem: Missing Metadata for Function Parameters

■ Happens if: instrumented Rust functions are called
from uninstrumented C functions:
C --arg--> Rust

■ Special case: instrumented rust functions are passed as
function pointers and later called as callback from
uninstrumented C functions

■ Consequential problem: instrumented Rust functions
assume that shadow stack is setup correctly, but no
metadata has been pushed. Popping from the shadow
⇒ smashing the shadow stack

■ Solution: ✓
■ Extend shadow stack ABI: additionally push address of called function onto shadow stack
■ Check if correct address is present before popping from the stack

Ensuring Memory Safety for the Transition from C/C++ to Rust | Oliver Braunsdorf | November 2, 2023 | 35

Backup

Problem: Missing Metadata for Function Return Values

■ Happens if: instrumented Rust functions read return
value from called uninstrumented C functions:
Rust <--ret-- C

■ Can be avoided if all uninstrumented C functions are
wrapped in Softbound/CETS-aware wrapper functions

■ However, if not all uninstrumented C are wrapped:
Popping metadata from shadow stack when no
metadata is there ⇒ smashing the shadow stack

■ Solution: ✓

■ Encode if callee function pushed metadata for return value by setting LSB of
called address

■ Can be done because otherwise LSB is always 0 (8-byte alignment of function addresses on
x86)

Ensuring Memory Safety for the Transition from C/C++ to Rust | Oliver Braunsdorf | November 2, 2023 | 36

	Advantages of Rust
	Focus: Memory Safety
	The Issue with Adopting Rust
	Gradually Transitioning to Rust
	Rust and C/C++ Interoperability through FFI
	The Problem with FFI
	Solution: Memory-Safety Sanitizer
	How Sanitizers Work
	Sanitizer in Rust

	Current Research: Sanitizer Optimizations for Safe Rust
	Idea
	Approach
	Architecture
	Preliminary Results
	Outlook

	Contact
	Backup
	HWASAN
	Utilize Existing Approach: Softbound & CETS
	Status 29.07.2021
	Status 27.01.2022
	Problem: Nested Pointers in Aggregate Types
	Problem: Missing Metadata for Function Parameters
	Problem: Missing Metadata for Function Return Values

